direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C24×D13, C13⋊C25, C26⋊C24, (C23×C26)⋊5C2, (C2×C26)⋊4C23, (C22×C26)⋊8C22, SmallGroup(416,234)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C24×D13 |
Generators and relations for C24×D13
G = < a,b,c,d,e,f | a2=b2=c2=d2=e13=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 4432 in 748 conjugacy classes, 441 normal (5 characteristic)
C1, C2, C2, C22, C22, C23, C23, C13, C24, C24, D13, C26, C25, D26, C2×C26, C22×D13, C22×C26, C23×D13, C23×C26, C24×D13
Quotients: C1, C2, C22, C23, C24, D13, C25, D26, C22×D13, C23×D13, C24×D13
(1 196)(2 197)(3 198)(4 199)(5 200)(6 201)(7 202)(8 203)(9 204)(10 205)(11 206)(12 207)(13 208)(14 188)(15 189)(16 190)(17 191)(18 192)(19 193)(20 194)(21 195)(22 183)(23 184)(24 185)(25 186)(26 187)(27 170)(28 171)(29 172)(30 173)(31 174)(32 175)(33 176)(34 177)(35 178)(36 179)(37 180)(38 181)(39 182)(40 168)(41 169)(42 157)(43 158)(44 159)(45 160)(46 161)(47 162)(48 163)(49 164)(50 165)(51 166)(52 167)(53 148)(54 149)(55 150)(56 151)(57 152)(58 153)(59 154)(60 155)(61 156)(62 144)(63 145)(64 146)(65 147)(66 139)(67 140)(68 141)(69 142)(70 143)(71 131)(72 132)(73 133)(74 134)(75 135)(76 136)(77 137)(78 138)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 118)(89 119)(90 120)(91 121)(92 105)(93 106)(94 107)(95 108)(96 109)(97 110)(98 111)(99 112)(100 113)(101 114)(102 115)(103 116)(104 117)
(1 101)(2 102)(3 103)(4 104)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 88)(15 89)(16 90)(17 91)(18 79)(19 80)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 76)(28 77)(29 78)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(37 73)(38 74)(39 75)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 53)(48 54)(49 55)(50 56)(51 57)(52 58)(105 200)(106 201)(107 202)(108 203)(109 204)(110 205)(111 206)(112 207)(113 208)(114 196)(115 197)(116 198)(117 199)(118 188)(119 189)(120 190)(121 191)(122 192)(123 193)(124 194)(125 195)(126 183)(127 184)(128 185)(129 186)(130 187)(131 178)(132 179)(133 180)(134 181)(135 182)(136 170)(137 171)(138 172)(139 173)(140 174)(141 175)(142 176)(143 177)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(155 169)(156 157)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 27)(12 28)(13 29)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(53 89)(54 90)(55 91)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 101)(67 102)(68 103)(69 104)(70 92)(71 93)(72 94)(73 95)(74 96)(75 97)(76 98)(77 99)(78 100)(105 143)(106 131)(107 132)(108 133)(109 134)(110 135)(111 136)(112 137)(113 138)(114 139)(115 140)(116 141)(117 142)(118 147)(119 148)(120 149)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 144)(129 145)(130 146)(157 184)(158 185)(159 186)(160 187)(161 188)(162 189)(163 190)(164 191)(165 192)(166 193)(167 194)(168 195)(169 183)(170 206)(171 207)(172 208)(173 196)(174 197)(175 198)(176 199)(177 200)(178 201)(179 202)(180 203)(181 204)(182 205)
(1 23)(2 24)(3 25)(4 26)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(12 21)(13 22)(27 52)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 66)(62 67)(63 68)(64 69)(65 70)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)(86 103)(87 104)(88 92)(89 93)(90 94)(91 95)(105 118)(106 119)(107 120)(108 121)(109 122)(110 123)(111 124)(112 125)(113 126)(114 127)(115 128)(116 129)(117 130)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 144)(141 145)(142 146)(143 147)(157 173)(158 174)(159 175)(160 176)(161 177)(162 178)(163 179)(164 180)(165 181)(166 182)(167 170)(168 171)(169 172)(183 208)(184 196)(185 197)(186 198)(187 199)(188 200)(189 201)(190 202)(191 203)(192 204)(193 205)(194 206)(195 207)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169)(170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 138)(2 137)(3 136)(4 135)(5 134)(6 133)(7 132)(8 131)(9 143)(10 142)(11 141)(12 140)(13 139)(14 151)(15 150)(16 149)(17 148)(18 147)(19 146)(20 145)(21 144)(22 156)(23 155)(24 154)(25 153)(26 152)(27 116)(28 115)(29 114)(30 113)(31 112)(32 111)(33 110)(34 109)(35 108)(36 107)(37 106)(38 105)(39 117)(40 128)(41 127)(42 126)(43 125)(44 124)(45 123)(46 122)(47 121)(48 120)(49 119)(50 118)(51 130)(52 129)(53 191)(54 190)(55 189)(56 188)(57 187)(58 186)(59 185)(60 184)(61 183)(62 195)(63 194)(64 193)(65 192)(66 208)(67 207)(68 206)(69 205)(70 204)(71 203)(72 202)(73 201)(74 200)(75 199)(76 198)(77 197)(78 196)(79 161)(80 160)(81 159)(82 158)(83 157)(84 169)(85 168)(86 167)(87 166)(88 165)(89 164)(90 163)(91 162)(92 181)(93 180)(94 179)(95 178)(96 177)(97 176)(98 175)(99 174)(100 173)(101 172)(102 171)(103 170)(104 182)
G:=sub<Sym(208)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,188)(15,189)(16,190)(17,191)(18,192)(19,193)(20,194)(21,195)(22,183)(23,184)(24,185)(25,186)(26,187)(27,170)(28,171)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,180)(38,181)(39,182)(40,168)(41,169)(42,157)(43,158)(44,159)(45,160)(46,161)(47,162)(48,163)(49,164)(50,165)(51,166)(52,167)(53,148)(54,149)(55,150)(56,151)(57,152)(58,153)(59,154)(60,155)(61,156)(62,144)(63,145)(64,146)(65,147)(66,139)(67,140)(68,141)(69,142)(70,143)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,118)(89,119)(90,120)(91,121)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113)(101,114)(102,115)(103,116)(104,117), (1,101)(2,102)(3,103)(4,104)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,88)(15,89)(16,90)(17,91)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,76)(28,77)(29,78)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58)(105,200)(106,201)(107,202)(108,203)(109,204)(110,205)(111,206)(112,207)(113,208)(114,196)(115,197)(116,198)(117,199)(118,188)(119,189)(120,190)(121,191)(122,192)(123,193)(124,194)(125,195)(126,183)(127,184)(128,185)(129,186)(130,187)(131,178)(132,179)(133,180)(134,181)(135,182)(136,170)(137,171)(138,172)(139,173)(140,174)(141,175)(142,176)(143,177)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(155,169)(156,157), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,27)(12,28)(13,29)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(53,89)(54,90)(55,91)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,101)(67,102)(68,103)(69,104)(70,92)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(105,143)(106,131)(107,132)(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)(116,141)(117,142)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,144)(129,145)(130,146)(157,184)(158,185)(159,186)(160,187)(161,188)(162,189)(163,190)(164,191)(165,192)(166,193)(167,194)(168,195)(169,183)(170,206)(171,207)(172,208)(173,196)(174,197)(175,198)(176,199)(177,200)(178,201)(179,202)(180,203)(181,204)(182,205), (1,23)(2,24)(3,25)(4,26)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(13,22)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,66)(62,67)(63,68)(64,69)(65,70)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,92)(89,93)(90,94)(91,95)(105,118)(106,119)(107,120)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,144)(141,145)(142,146)(143,147)(157,173)(158,174)(159,175)(160,176)(161,177)(162,178)(163,179)(164,180)(165,181)(166,182)(167,170)(168,171)(169,172)(183,208)(184,196)(185,197)(186,198)(187,199)(188,200)(189,201)(190,202)(191,203)(192,204)(193,205)(194,206)(195,207), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,138)(2,137)(3,136)(4,135)(5,134)(6,133)(7,132)(8,131)(9,143)(10,142)(11,141)(12,140)(13,139)(14,151)(15,150)(16,149)(17,148)(18,147)(19,146)(20,145)(21,144)(22,156)(23,155)(24,154)(25,153)(26,152)(27,116)(28,115)(29,114)(30,113)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,117)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,130)(52,129)(53,191)(54,190)(55,189)(56,188)(57,187)(58,186)(59,185)(60,184)(61,183)(62,195)(63,194)(64,193)(65,192)(66,208)(67,207)(68,206)(69,205)(70,204)(71,203)(72,202)(73,201)(74,200)(75,199)(76,198)(77,197)(78,196)(79,161)(80,160)(81,159)(82,158)(83,157)(84,169)(85,168)(86,167)(87,166)(88,165)(89,164)(90,163)(91,162)(92,181)(93,180)(94,179)(95,178)(96,177)(97,176)(98,175)(99,174)(100,173)(101,172)(102,171)(103,170)(104,182)>;
G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,188)(15,189)(16,190)(17,191)(18,192)(19,193)(20,194)(21,195)(22,183)(23,184)(24,185)(25,186)(26,187)(27,170)(28,171)(29,172)(30,173)(31,174)(32,175)(33,176)(34,177)(35,178)(36,179)(37,180)(38,181)(39,182)(40,168)(41,169)(42,157)(43,158)(44,159)(45,160)(46,161)(47,162)(48,163)(49,164)(50,165)(51,166)(52,167)(53,148)(54,149)(55,150)(56,151)(57,152)(58,153)(59,154)(60,155)(61,156)(62,144)(63,145)(64,146)(65,147)(66,139)(67,140)(68,141)(69,142)(70,143)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,118)(89,119)(90,120)(91,121)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113)(101,114)(102,115)(103,116)(104,117), (1,101)(2,102)(3,103)(4,104)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,88)(15,89)(16,90)(17,91)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,76)(28,77)(29,78)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(37,73)(38,74)(39,75)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58)(105,200)(106,201)(107,202)(108,203)(109,204)(110,205)(111,206)(112,207)(113,208)(114,196)(115,197)(116,198)(117,199)(118,188)(119,189)(120,190)(121,191)(122,192)(123,193)(124,194)(125,195)(126,183)(127,184)(128,185)(129,186)(130,187)(131,178)(132,179)(133,180)(134,181)(135,182)(136,170)(137,171)(138,172)(139,173)(140,174)(141,175)(142,176)(143,177)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(155,169)(156,157), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,27)(12,28)(13,29)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(53,89)(54,90)(55,91)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,101)(67,102)(68,103)(69,104)(70,92)(71,93)(72,94)(73,95)(74,96)(75,97)(76,98)(77,99)(78,100)(105,143)(106,131)(107,132)(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)(116,141)(117,142)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,144)(129,145)(130,146)(157,184)(158,185)(159,186)(160,187)(161,188)(162,189)(163,190)(164,191)(165,192)(166,193)(167,194)(168,195)(169,183)(170,206)(171,207)(172,208)(173,196)(174,197)(175,198)(176,199)(177,200)(178,201)(179,202)(180,203)(181,204)(182,205), (1,23)(2,24)(3,25)(4,26)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(13,22)(27,52)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,66)(62,67)(63,68)(64,69)(65,70)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,92)(89,93)(90,94)(91,95)(105,118)(106,119)(107,120)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,144)(141,145)(142,146)(143,147)(157,173)(158,174)(159,175)(160,176)(161,177)(162,178)(163,179)(164,180)(165,181)(166,182)(167,170)(168,171)(169,172)(183,208)(184,196)(185,197)(186,198)(187,199)(188,200)(189,201)(190,202)(191,203)(192,204)(193,205)(194,206)(195,207), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,138)(2,137)(3,136)(4,135)(5,134)(6,133)(7,132)(8,131)(9,143)(10,142)(11,141)(12,140)(13,139)(14,151)(15,150)(16,149)(17,148)(18,147)(19,146)(20,145)(21,144)(22,156)(23,155)(24,154)(25,153)(26,152)(27,116)(28,115)(29,114)(30,113)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,117)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,130)(52,129)(53,191)(54,190)(55,189)(56,188)(57,187)(58,186)(59,185)(60,184)(61,183)(62,195)(63,194)(64,193)(65,192)(66,208)(67,207)(68,206)(69,205)(70,204)(71,203)(72,202)(73,201)(74,200)(75,199)(76,198)(77,197)(78,196)(79,161)(80,160)(81,159)(82,158)(83,157)(84,169)(85,168)(86,167)(87,166)(88,165)(89,164)(90,163)(91,162)(92,181)(93,180)(94,179)(95,178)(96,177)(97,176)(98,175)(99,174)(100,173)(101,172)(102,171)(103,170)(104,182) );
G=PermutationGroup([[(1,196),(2,197),(3,198),(4,199),(5,200),(6,201),(7,202),(8,203),(9,204),(10,205),(11,206),(12,207),(13,208),(14,188),(15,189),(16,190),(17,191),(18,192),(19,193),(20,194),(21,195),(22,183),(23,184),(24,185),(25,186),(26,187),(27,170),(28,171),(29,172),(30,173),(31,174),(32,175),(33,176),(34,177),(35,178),(36,179),(37,180),(38,181),(39,182),(40,168),(41,169),(42,157),(43,158),(44,159),(45,160),(46,161),(47,162),(48,163),(49,164),(50,165),(51,166),(52,167),(53,148),(54,149),(55,150),(56,151),(57,152),(58,153),(59,154),(60,155),(61,156),(62,144),(63,145),(64,146),(65,147),(66,139),(67,140),(68,141),(69,142),(70,143),(71,131),(72,132),(73,133),(74,134),(75,135),(76,136),(77,137),(78,138),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,118),(89,119),(90,120),(91,121),(92,105),(93,106),(94,107),(95,108),(96,109),(97,110),(98,111),(99,112),(100,113),(101,114),(102,115),(103,116),(104,117)], [(1,101),(2,102),(3,103),(4,104),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,88),(15,89),(16,90),(17,91),(18,79),(19,80),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,76),(28,77),(29,78),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(37,73),(38,74),(39,75),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,53),(48,54),(49,55),(50,56),(51,57),(52,58),(105,200),(106,201),(107,202),(108,203),(109,204),(110,205),(111,206),(112,207),(113,208),(114,196),(115,197),(116,198),(117,199),(118,188),(119,189),(120,190),(121,191),(122,192),(123,193),(124,194),(125,195),(126,183),(127,184),(128,185),(129,186),(130,187),(131,178),(132,179),(133,180),(134,181),(135,182),(136,170),(137,171),(138,172),(139,173),(140,174),(141,175),(142,176),(143,177),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(155,169),(156,157)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,27),(12,28),(13,29),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(53,89),(54,90),(55,91),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,101),(67,102),(68,103),(69,104),(70,92),(71,93),(72,94),(73,95),(74,96),(75,97),(76,98),(77,99),(78,100),(105,143),(106,131),(107,132),(108,133),(109,134),(110,135),(111,136),(112,137),(113,138),(114,139),(115,140),(116,141),(117,142),(118,147),(119,148),(120,149),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,144),(129,145),(130,146),(157,184),(158,185),(159,186),(160,187),(161,188),(162,189),(163,190),(164,191),(165,192),(166,193),(167,194),(168,195),(169,183),(170,206),(171,207),(172,208),(173,196),(174,197),(175,198),(176,199),(177,200),(178,201),(179,202),(180,203),(181,204),(182,205)], [(1,23),(2,24),(3,25),(4,26),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(12,21),(13,22),(27,52),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,66),(62,67),(63,68),(64,69),(65,70),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102),(86,103),(87,104),(88,92),(89,93),(90,94),(91,95),(105,118),(106,119),(107,120),(108,121),(109,122),(110,123),(111,124),(112,125),(113,126),(114,127),(115,128),(116,129),(117,130),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,144),(141,145),(142,146),(143,147),(157,173),(158,174),(159,175),(160,176),(161,177),(162,178),(163,179),(164,180),(165,181),(166,182),(167,170),(168,171),(169,172),(183,208),(184,196),(185,197),(186,198),(187,199),(188,200),(189,201),(190,202),(191,203),(192,204),(193,205),(194,206),(195,207)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169),(170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,138),(2,137),(3,136),(4,135),(5,134),(6,133),(7,132),(8,131),(9,143),(10,142),(11,141),(12,140),(13,139),(14,151),(15,150),(16,149),(17,148),(18,147),(19,146),(20,145),(21,144),(22,156),(23,155),(24,154),(25,153),(26,152),(27,116),(28,115),(29,114),(30,113),(31,112),(32,111),(33,110),(34,109),(35,108),(36,107),(37,106),(38,105),(39,117),(40,128),(41,127),(42,126),(43,125),(44,124),(45,123),(46,122),(47,121),(48,120),(49,119),(50,118),(51,130),(52,129),(53,191),(54,190),(55,189),(56,188),(57,187),(58,186),(59,185),(60,184),(61,183),(62,195),(63,194),(64,193),(65,192),(66,208),(67,207),(68,206),(69,205),(70,204),(71,203),(72,202),(73,201),(74,200),(75,199),(76,198),(77,197),(78,196),(79,161),(80,160),(81,159),(82,158),(83,157),(84,169),(85,168),(86,167),(87,166),(88,165),(89,164),(90,163),(91,162),(92,181),(93,180),(94,179),(95,178),(96,177),(97,176),(98,175),(99,174),(100,173),(101,172),(102,171),(103,170),(104,182)]])
128 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 13A | ··· | 13F | 26A | ··· | 26CL |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 13 | ··· | 13 | 26 | ··· | 26 |
size | 1 | 1 | ··· | 1 | 13 | ··· | 13 | 2 | ··· | 2 | 2 | ··· | 2 |
128 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D13 | D26 |
kernel | C24×D13 | C23×D13 | C23×C26 | C24 | C23 |
# reps | 1 | 30 | 1 | 6 | 90 |
Matrix representation of C24×D13 ►in GL5(𝔽53)
52 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
52 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 52 | 0 |
0 | 0 | 0 | 0 | 52 |
52 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
52 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 0 | 0 |
0 | 0 | 52 | 0 | 0 |
0 | 0 | 0 | 52 | 0 |
0 | 0 | 0 | 0 | 52 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 43 | 1 |
0 | 0 | 0 | 31 | 18 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 52 | 0 | 0 |
0 | 0 | 0 | 37 | 45 |
0 | 0 | 0 | 12 | 16 |
G:=sub<GL(5,GF(53))| [52,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[52,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,52,0,0,0,0,0,52],[52,0,0,0,0,0,52,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[52,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,43,31,0,0,0,1,18],[1,0,0,0,0,0,1,0,0,0,0,0,52,0,0,0,0,0,37,12,0,0,0,45,16] >;
C24×D13 in GAP, Magma, Sage, TeX
C_2^4\times D_{13}
% in TeX
G:=Group("C2^4xD13");
// GroupNames label
G:=SmallGroup(416,234);
// by ID
G=gap.SmallGroup(416,234);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,13829]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^13=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations